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B U B B L E  G R O W T H  R A T E  A N D  P H E N O M E N O N  

O F  D E G E N E R A T E  B O I L I N G  O F  A F L U I D  

I N  T H E  F O R M  O F  F I L M  V A P O R I Z A T I O N  

A. R. Dorokhov and V. I. Zhukov UDC 536.423.1 

An analysis of results of an investigation of vaporization of a thin fluid film under vacuum is presented. The 

vaporization process has basic features characteristic of bubble boiling of a fluid, except for formation of 

bubbles. This makes it possible to classify the phenomenon as degenerate boiling of a fluid in the form of 

film evaporation during which local thinning of the layer takes place and funnel- and crater-shaped structures 

are formed. Funnels and craters are vapor sources with different powers. Dependences of the bubble growth 

rate above vapor sources of both types that generalize available experimental data are obtained. 

The  relat ionship between the heat t ransfer  in bubble boiling of fluids and the bubble growth mechanism 

in boiling in an infinitely large volume of superheated fluids has been ra ther  thoroughly investigated. In theoretical  

consideration of the problem and in generalization of results of experimental  investigations, solutions for the radius 

of a growing bubble  are usually obtained in the following form [1 ]: 

R b = Abt n , (1) 

where R b is the bubble radius, A b is a constant ,  and n = 1 /2  - 1. 

New information on the relationship between the heat - t ransfer  mechanism and bubble growth mechanisms 

on a heating surface can be obtained in investigation of certain cases with limiting values of the hea t - t r ans fe r  

parameters.  One of them is presented in experimental  investigations of heat t ransfer  in thin fluid films unde r  

vacuum [2 ]. No bubble formation was observed in the layer; however, several microlayer  zones of different  shapes 

and other  phenomena  characteristic of bubble-boiling processes were observed. Whereas bubble growth usually 

takes place in several tens of microseconds,  the phenomena noted in in [2] had a durat ion of several seconds 

(several thousand microseconds),  and they could be observed with the unaided eye and were recorded using a 

conventional pholocamera.  A prel iminary analysis of the results obtained in conformity with an investigation of the 

growth rate of vapor bubbles on the heating surface in boiling was carr ied out in [3 ]. 

The  working chamber  where the experiments  were carried out consisted of a casing in the form of a cyl inder  

with an inner d iameter  d = 120 mm and a height of 300 mm made of stainless steel. A cooling coil (with water  as 

the coolant) was si tuated on the outer  surface of the upper portion of the cylinder.  The  tempera ture  was measured  

by copper-constantan thermocouples made of 0.12 mm wire. The  pressure in the volume was measured  by a U- 

shaped oil differential  manometer  and was controlled by a valve. A more detailed description of the exper imenta l  

setup can be found elsewhere [2 ]. 

Prior to the experiments,  a certain amount  of liquid (vacuum mineral  oil VM-1) was poured on the bottom 

to provide a layer  of the required thickness. The  oil was degassed by boiling under  vacuum for 6-8 h. Visual 

observations were made through windows in the upper and lower portions of the chamber.  Processes in the layer  

were photographed using a Zen i t h -TTL  camera with the exposure set at 1 /30  sec. 

It should be pointed out that in using conventional visualization methods for investigation of the boiling 

process, the information required can be obtained only with the use of a high-speed photographic technique. 
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Fig. 1. Cra te r  format ion dynamics:  a) convective cell; b)funnel ;  c) crater .  

The  most  detai led observations were carried out for an oil layer  with a height of 2 mm. In one case,  the 

pressure  was set at 200 Pa, and  in the other  case, measurements  were set at 5 - 1 0  Pa. Explosive boiling took place 

at a pressure  of 200 Pa, whereas  at 5 - 1 0  Pa it was absent ,  and the process schematical ly  presented  in Fig. 1 was 

observed.  

Figure la  presents  a cross section of a convective cell with flow lines shown. A schematic  view of the velocity 

profile of the liquid vapor  is presented.  Warmer  liquid rises in the center,  and  cooler liquid descends  at the edges. 

A tempera ture  gradient  usually exists at the free boundary  of convective cells [4 ]. When the liquid is hea ted  a lmost  

to its boiling point, in tense  vaporization of it from the free upper  boundary  sets in. At this instant ,  the react ive 

force of the phase  t ransi t ion has different  values in differently heated  surface regions., In regions where  the liquid 

is warmer ,  it has h igher  values [5 ], and  under  its effect the liquid layer  is th inned  here,  and  a funnel  is fo rmed  

(Fig. lb ) .  The  funnels move over the surface and disappear  at the walls of the chamber ,  where  cooler condensed  

liquid flows down. T h e  existence of the funnels is mainta ined by the reactive force of the phase  transi t ion.  T h e  fog 

jets that  flow out of the funnels,  visually observed in t ransmit ted light, indicate that  the liquid evaporat ion ra te  is 

higher  on the funnel  surface than in o ther  regions. The  funnel moves over the chamber  bot tom f rom a cooler region 

that is cooled as a result  of vaporization from the funnel base to a hot ter  one. Visual observat ions revealed no vapor  

bubbles in the liquid upon formation of funnels.  In warmer  regions, the densi ty  of funnels  is higher.  Here ,  c ra ters  

covered with an oil microlayer  are formed (Fig. lc).  The  craters move over the surface. The  trajectories of funnel  

motion most ly  coincide with drift trajectories of convective cells. The  craters  have a rb i t ra ry  trajectories of motion.  

It need only be noted that  not a single crater  passed twice over one and  the same point of the heat ing surface.  

Figure 2 presents  photographs of the processes observed in an oil film of thickness 2 mm. In the region 

over which a crater  has passed,  which has resulted in cooling of the liquid due to intense evaporat ion,  first no 

ordered motions in the oil are observed,  and then convective cells appear  in the layer.  After a time, funnels  ap p ea r  

at their  sites (Fig. 2a). In the region where the funnel densi ty is highest,  a cra ter  is formed again (Fig. 2b).  T h e  

process is repeated;  the number ,  size, and rate of formation of craters  increase with the specific heat  flux. In certain 

cases, at the instant  when the cra ter  is formed,  the liquid at its edges is raised a little by the vapor flow escaping 

from under  the layer. The  duration of cra ter  motion over the surface is 1 - 3  sec. Over the entire range  of variat ion 

of the heat flux, when the regime of coexistence of funnels and craters was realized, the lat ter  were covered with 
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Fig. 2. Photographs of processes observed in a film of VM-1 oil of thickness 

2 mm: a) funnel; b) crater  (shown by the cross) ; c) two craters connected by 

a bridge (shown by the arrow). Scale 1 cm. 
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Fig. 3. Surface-temperature pulsations during boiling of a film in the range of 

low heat  fluxes, t, sec; AT, K. 

an oil microlayer.  Finally, at high specific heat fluxes, a regime appears in which mtich of the surface is covered 

with craters wetted by narrow oil bridges moving between them (Fig. 2c). At heat fluxes corresponding to the onset  

of this regime,  the  cra ters  remain covered by an oil microlayer.  When the heat  flux increases fur ther ,  the 

microlayers on the crater  surfaces begin to vaporize instantaneously,  which is followed by washing-out of the cra ter  

by the oil bridge. 

In the experiments,  the temperature  of the heating surface was measured by a thermocouple si tuated at a 

distance of 0.1 mm from the surface. Readings of the thermocouple were recorded by an automatic recorder .  Figure 

3 shows changes in the surface temperature  in an oil layer of height 2 mm at a specific heat flux q N 10,000 W / m  2 

in the case where a pressure of 5 - 1 0  Pa was maintained prior to heating. At the initial instant,  no clusters are 

observed in the layer ,  and  the temperature  of the heating surface grows exponent ia l ly  (segment 1-2). After  

t - 15 sec, craters appear  in the layer,  and the surface temperature decreases (segment 2-3),  and then it remains 

almost constant  for a certain time (segment 3-4). At the instant t - 2 7  sec, a crater  passes over the thermocouple 

mounted in the bottom of the cylinder,  and the temperature of the bottom decreases sharply (segment 4-5),  and 

432 



then it increases (segment 5-6). The  next  peak in this curve corresponds to passage of the next  c ra ter  (segment 

6-7). At t - 4 0  sec, the temperature  of the surface starts to grow exponential ly again to its original level as craters  

start to appear  in the layer  (segment 7-8). The  instant of passage of a crater  over the thermocouple site was detected 
visually. 

By its form of manifestation (the absence of vapor bubbles),  the process observed differs from conventional  

boiling of liquids, and therefore,  in [2 ] we classified it as evaporation, which indeed takes place. However,  this 

process has features in common with conventional bubble boiling of liquids: 

I) upon an increase in the heat flux, it changes regimes of convective heat t ransfer  and is much more  

intense compared to the latter; 

2) pulsations of the surface temperature  are observed under  the structures (funnels and craters)  formed 
during the process; 

3) a liquid microlayer is formed on the surface (at the base of funnels and craters) .  

In addition, in boiling of a liquid under  vacuum, phenomena similar to the above-outl ined process have 

been observed, namely,  motion of bubbles over the heating surface [6 ] that is similar to the motion of craters .  

Taking into account the above features,  one can classify the process as a phenomenon of degenera te  boiling of a 

liquid in the form of film vaporization that  consists in the fact that in heat ing from below a thin liquid layer  on a 

horizontal heating surface under  vacuum, local thinning of the layer  occurs and structures in the form of funnels  

(Fig. 2a) and moving craters (Fig. 2b) appear  that are caused the action of the reactive force of the phase transi t ion,  

which is nonuniformly distr ibuted over the upper boundary  of the liquid layer. Let us consider  the propert ies  of 

the structures. 

The  shape of the funnels remains constant under  certain external  conditions in the bulk and  on the heat ing 

surface. The  shape of the craters changes during their  motion over the surface. The  trajectories of funnel motion 

coincide with those  of dr i f t  of convect ive cells over  the hea t ing  surface.  Indiviclual c ra te rs  have different  

nonintersecting trajectories of motion. 

Funnels and craters appear in the regions of the most intense liquid vaporization, and therefore ,  they can 

be considered as sources of vapor, and a thermal characteristic such as the vapor source power Q can be in t roduced 

to describe them. 

Funnels exist at low heat fluxes, and craters cover the entire heat ing surface at high heat fluxes, from 

which it follows that the funnel power Qf is lower than the power of craters Qc. The  question of why funnels  

(low-energy structures) are replaced by craters (high-energy structures) arises. What limits the heat  flux removed 

by funnels? 

First, funnels have well-defined dimensions under  given conditions in the bulk, and therefore  it is evident  

that there exists a limiting surface densi ty of funnels N, and thus the heat flux removed by funnels from a unit  

area cannot exceed q = NQf. 
Second, the power of an idividual funnel Qf is also limited under  certain conditions in the bulk. Let us 

return to the discussion of the process presented schematically in Fig. 1. When the layer  is hea ted  in the regime 

of convective heat transfer,  vapor leaves the upper boundary  of the layer  with the velocity w 0 (Fig. la) .  The  heat  

flux removed from the surface of the liquid layer  is therefore Q -- rpvwoS. 
Then  funnels are formed on the surface of the liquid layer  (Fig. lb) .  In the center  of a funnel,  the liquid 

layer has the smallest thickness and the heat- t ransfer  coefficient and the tempera ture  have the lowest values, and  

therefore the velocity of vapor escape has the maximum value w m in this region. Liquid with the lowest t empera tu re  

vaporizes on the upper boundary,  and therefore the velocity of vapor escape in this region has the lowest value 

w O. The velocity profile of the vapor over the funnel radius can be represented in the form 

- Wo = (win  - ~ o ) f  ( ' 7 ) ,  

where f(~) is an axisymmetric  function that varies from unity at the funnel center  to zero on the upper boundary  

of the liquid layer. The value of the function f(~/) drops rapidly with distance from the funnel center ,  and the 
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(unknown) t empera tu re  distribution over the funnel surface is required for calculation of the function. T h e  funnel 

power is as follows: 

Rf 1 

Qf = Pv r2~r f wydy = pv r (wm - Wo) ZTrR 2 f f (rl) rldr 1 + Pv rwo z~R2 , 
0 0 

which, af ter  t ransformat ions ,  takes the following form: 

Qf = Pv rWm ~R~ I(1 - WO/Wm) 

L 
] 2 f f (r l)r ldr I + W o / W  m . 

0 

Let us ana lyze  the expression obtained.  The  funnel shape  is de te rmined  by the effect of the reactive force 

of the phase  t ransi t ion - actually,  by the ratio Wo/W m , where  w 0 de te rmines  the effect of the reactive force of the 

phase  transit ion on the upper  boundary  of the liquid layer,  and  w m that  on the funne l ' s  bot tom. Since the funnel  

1 

shape  remains  constant  at a constant  pressure  in the bulk, Wo/W m = const and  f/(,1),7d,7 = const.  The  funnel  radius ,  
0 

vapor densi ty,  and  heat  of the phase  transi t ion can also be considered to be constant .  T h e n  

Qf = rPvW m ~ R  2 const = Aw m . 

It follows f rom the expression obta ined that  the power of a funnel is direct ly proport ional  to the velocity 

of vapor  escape  f rom its bottom. The  vapor  escape velocity is bounded  by  the p ropaga ton  velocity of small  

per turbat ions ,  i.e., the velocity of sound c = ~ .  When the t empera tu re  of the heat ing surface changes  by 

several degrees ,  e.g., f rom T l = 520 K to T 2 = 530 K (as in exper iments  [2 ]), the velocity of sound changes  

insignificantly: T l ~ 2  = 1.01. At the same time, the heat  flux supplied to the heat ing surface  changes  by several  

hundred  percent.  Therefore ,  funnels are vapor  sources of constant  power, Qf = const. Th is  conclusion does not 

contradict  exper imenta l  findings [2] and makes  it possible to explain why funnels  are replaced by craters.  

As the heat  flux grows, the corresponding increase in the heat  t ransfer  is a t ta ined by means  of an increase  

in the number  of funnels  on the surface. The  funnels appear  in hot ter  regions of the surface,  and  some work is 

spent  on their  creat ion.  The  existence of this work of funnel creation makes  it possible to stabil ize the he a t - t r an s f e r  

process in the regions with the max imum superheat ing and  thus to prevent  the appea rance  of cra ters  in these 

regions. When the limiting population densi ty  of funnels on the liquid surface is a t ta ined ,  the liquid cannot  be 

cooled fur ther  through the funnel surfaces. Therefore ,  a fur ther  increase in the heat  flux in the layer  leads to the 

appearance  of craters .  

As opposed  to the funnels ,  the c ra te rs  (Fig. lc) do not have cons tan t  shape  and  d imens ions .  The i r  

appearance  is accompanied  by emergence of pressure  pulsations in the bulk, and  therefore ,  the craters  are  var iable-  

power vapor sources. T h e  cra ter  power is a sum of two components:  Qc -- Qw + Qp, where  Qw is the heat  flux 

removed from the c ra te r  surface covered with an oil microlayer ,  and Qp is the heat  flux removed from the meniscus 

at the interface between the heating surface and  the liquid. When the cra ter  is formed,  the most  intense vaporizat ion 

of the liquid takes place in the vicinity of the meniscus.  In this region, the liquid is pushed  away  due to the effect 

of the reactive force emerging as a result  of the phase  transit ion. In regions where  the vaporizat ion front  has  passed,  

the liquid cools down [2 ], and  therefore vaporizat ion of the liquid on the cold cra ter  surface can be neglected.  Thus ,  

one can consider  the cra ter  power to be de te rmined  by the vapor  flow escaping from the meniscus  region, i.e., Qc 

= Qp. The  velocity of vapor  escape in the case of craters  is also limited by the velocity of sound c. 

The  qualitative regularities of the process are the same for boiling of liquids under  different  condit ions.  If 

this takes place in a large volume, ( funnel- type)  cons tant -power  vapor sources can be observed at the small  heat  

fluxes at the s tar t  of the boiling curve, when bubbles  from different vaporizat ion centers  do not merge and  there 

exist enough vaporizat ion centers to preclude explosion- type boiling. The  power of vapor sources Q can be calculated 

from the bubble  growth rate. The  equation for the change in the bubble volume V is as follows: 
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pvr (Jv/~t) = e .  (2) 

In the case of a constant-power vapor source, Q = Qf = const, and then the following formula for the change 

in the bubble radius holds: 

Rb, f ( 3 Q f t / 4 J r p v r )  1 /3  = A t 1/3 
= b , f  " 

(3) 

In [3 ], one of us compared experimental  data obtained for the growth of bubbles in various liquids on 

heating surfaces of different  materials with calculations by Eq. (3), and good coincidence was observed.  In [7 ], it 

is pointed out that the growth of vapor bubbles in liquid metals also obeys dependence  (3). 

In the case of bubble growth over a (crater- type) variable-power vapor source, the source power Qc is the 

sum of the heat  flux supplied from the wall through the liquid microlayer  at the bubble base Qw, the heat  flux 

supplied from the liquid QL, and the heat flux supplied from the meniscus at the bubble base Qp: 

Qc = Qw + QL + Qp, 

Due to the inhomogenei ty of the tempera ture  distribution in the wall layer,  the most intense evaporat ion 

of the liquid takes place from a narrow evaporation layer  of thickness x si tuated at the bubble-wall  interface at the 

base of the bubble,  i.e., from the meniscus. A cooling temperature  wave is formed under  the bubble,  which moves 

into the bulk of the heat ing surface, which is followed by the reheat ing of the heat ing surface under  the bubble.  

As is shown by observations [2 ], the microlayer  is evaporated completely only at high heat  f luxes in a regime where  

only craters are observed on the heating surface. Therefore ,  at slight superheat ing of the main body of the liquid, 

the heat fluxes QL and Qw can be neglected. Then,  in the period of bubble growth on the heat ing surface over a 

cra ter- type vapor source the power of the latter is Qc = Qp- 

Let the condition x << R c be satisfied, then the area of the vaporization surface equals Sc = 2~Rcx.  The  

specific heat  flux of vaporization is qv = rPvC, and 

Qc = 2"TrRc xr  pv c = Scq v . 

For boiling of water  at atmospheric pressure,  we obtain qv = 6 .10  8 W /m  2. This evaluation coincides with 

results of calculations of [8 ] in order  of magni tude and is several orders  of magni tude higher  than the heat  flux 

supplied to the liquid from the heating surface, which leads to tempera ture  pulsations under  a growing bubble.  

By inserting the expression for Qc and the dependence of the bubble volume on its radius into heat -ba lance  

equation (2), we obtain 

rPv4JrR~,c (dRb,c /d t )  = 2.TrR c Xr pvc .  

If viscosity effects and cooling of the liquid and the wall ahead  of the evaporation front  are neglected,  one  

obtains a constant width of the evaporation front x, and one can write 

2 
2rpvRb,c (dRb,c /d t )  = Rcqv, p , 

where qv,p is the heat flux per unit length of the bubble base (meniscus) perimeter.  If similarity of the l inear 

dimensions of the bubble occurs at all instants of time (e.g., hemispherical bubbles),  Rc /Rb ,  c = f - -  const, and then 

2 
2rPvRb, c (dRb,c /d t )  = Rcqv, p , 

from which a typical law for the growth of the bubble radius follows: 

R b , c  = (qv ,p /2 r  p v f 3 )  1 /2  t 1 /2  = Ab,c t l / 2  (4) 
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Fig. 4. T ime  dependences  of the  bubble  radius  (1) and  the  bubble  base  

d i a m e t e r  (2) for  bubb le s  growing over  v a r i a b l e - p o w e r  (cra ter )  (a) a n d  

cons tan t -power  (funnel) (b) vapor  sources. Rb,c, Rb,f, D, mm;  t, sec. 

Exper imenta l  data  [9 ] were processed using the method of least squares.  The  exponent  n - 1 / 2  in the 

bubble growth law (1) was obta ined for the radius  of hemispherical  bubbles.  Figure 4a presents  a compar ison of 

calculations with exper imenta l  data.  Curve 1 shows the t ime dependence  of the radius  of a hemispher ica l  bubble  

Rb,c ---- t 1/2, a n d  curve  2 shows a s imi la r  d e p e n d e n c e  for  the  growth  ra t e  of the d i a m e t e r  of the  base  of a 

hemispherical  bubble  D = 2R c - t  1~. The  coincidence of the results of the qualitative analys is  with exper imenta l  

data  subs tant ia tes  the validity of the above assumpt ions  of a constant  heat  flux qv,p" The  es t imate  of the vaporizat ion 

front width x - 2 / ~ m  is obta ined for hemispher ical  bubbles  from exper imenta l  data'  [9 ] on boiling of water  at 

a tmospher ic  pressure .  

It should be pointed out that  the volume V in hea t -ba lance  equation (2) can be evaluated from the equivalent 

bubble radius  sat isfying the relat ionship Req u = (3V/4~)1/3,  where V is the volume of a bubble  of a rb i t r a ry  shape.  

Here ,  the value of the derivative d V / d t  in the hea t -ba lance  equation does not change.  In what  follows, the bubble  

radius means  its equivalent radius R = Requ, and  here  R c = D / 2  is the actual geometr ic  radius  of the bubble  base.  

For funne l - type  cons tant -power  vapor  sources, we obtained relat ionship (3), according to which n - 1 / 3  

(curve 1 in Fig. 4b). Since af ter  formation of a funnel its shape  remains  constant ,  the radius  of the bubble  base  Rc 

should remain  constant  (curve 2 in Fig. 4b). 

Let us consider  the problem in the general  formulation.  Let R b = Ab tn (Eq. (1)) and  R c -- Ac tk, and  then,  

by insert ing these  relat ionships into (2) and  carrying out corresponding cancellations,  we obtain 

2A 3 nt3n-1 = Ac tkcx . (5) 

In the above analysis ,  n = 1/2 and k -- 1 /2  were obta ined for c ra te r - type  var iab le-power  vapor  sources.  For 

funnel - type  cons tan t -power  vapor sources n -- 1 /3  and  k = 0. By simple subst i tut ion in (5), one can show that  the 

relat ionship 3n - 1 = k holds. Thus ,  for 1 / 2  < n < 1 /3 ,  the t ime dependence  in (5) can be excluded. Then  we 

arrive at the ident i ty  2A3n = Accx ,  from which it follows that  the width of the vaporizat ion front  x remains  constant  

for constant  values of n over  the entire range  of n: 

x = (2A~n/AcC)  . 

It follows from exper imenta l  data [9 ] that  x - 1 - 2/~m for boiling of water  at a tmospher ic  pressure .  For 

c ra te r - type  var iab le -power  vapor  sources, the width of the vaporization front x is la rger  than  for funne l - type  

cons tant -power  vapor  sources. 

C O N C L U S I O N S  
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1. We have shown in this work that in vaporization of a liquid from a thin layer under vacuum [2 ], the 

main regularities inherent in the boiling process, except for formation of bubbles, are observed. Therefore, the 

phenomenon observed in [2 ] can be classified as degenerate boiling of a liquid in the form of film vaporization. 

2. An analysis of degenerate boiling of a liquid in the form of film vaporization has revealed two types of 

vapor sources: funnels and craters - with constant and variable power, respectively. 

3. An analysis of the reasons leading to a change from a boiling regime in which funnels (low-energy 

structures) prevail in the layer to a regime with craters (high-energy structures) prevailing in the layer leads to 

bounding of the velocity of vapor escape from the vaporizing liquid by the velocity of sound. 

4. Equations (3) and (4) for bubble growth above vapor sources of both types are obtained, which generalize 

well existing experimental data on boiling of various liquids in a large volume. 

5. It is shown that Eqs. (3) and (4) can be combined into a single common equation from which the width 

of the liquid vaporization front can be evaluated for boiling of water at atmospheric pressure. 

The work was carried out within the framework of project No. 330 of FTsP Integratsiya. 

N O T A T I O N  

At, constant in the law of structural-unit growth; D, diameter of the bubble base; M, molar weight; N, 

surface density of funnels; Q and Qi, vapor-source power; R, gas constant; Ri, radius of structural unit; S, area of 

vaporization surface; T, temperature; V, bubble volume; c, velocity of sound; d, diameter of the working chamber; 

n, k, exponents; qi, heat flux; r, heat of vaporization; t, time; w i, vapor motion velocity; x, width of the vaporization 

front; y, current funnel radius; Pv, vapor density; r /= y / R f ,  dimensionless funnel radius; y, adiabatic exponent. 

Subscripts: b, bubble; c, crater; f, funnel; m, maximum value; p, perimeter (meniscus) ; w, heating surface; v, vapor; 

0, unperturbed flux; L, liquid; equ, equivalent. 
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